3.1.66 \(\int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx\) [66]

3.1.66.1 Optimal result
3.1.66.2 Mathematica [B] (verified)
3.1.66.3 Rubi [A] (verified)
3.1.66.4 Maple [A] (verified)
3.1.66.5 Fricas [A] (verification not implemented)
3.1.66.6 Sympy [B] (verification not implemented)
3.1.66.7 Maxima [A] (verification not implemented)
3.1.66.8 Giac [A] (verification not implemented)
3.1.66.9 Mupad [B] (verification not implemented)

3.1.66.1 Optimal result

Integrand size = 31, antiderivative size = 185 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {(A-4 B) x}{a^4}-\frac {(55 A-244 B) \sin (c+d x)}{105 a^4 d}+\frac {(25 A-88 B) \cos ^2(c+d x) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))^2}-\frac {(A-4 B) \sin (c+d x)}{a^4 d (1+\cos (c+d x))}+\frac {(A-B) \cos ^4(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(5 A-12 B) \cos ^3(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3} \]

output
(A-4*B)*x/a^4-1/105*(55*A-244*B)*sin(d*x+c)/a^4/d+1/105*(25*A-88*B)*cos(d* 
x+c)^2*sin(d*x+c)/a^4/d/(1+cos(d*x+c))^2-(A-4*B)*sin(d*x+c)/a^4/d/(1+cos(d 
*x+c))+1/7*(A-B)*cos(d*x+c)^4*sin(d*x+c)/d/(a+a*cos(d*x+c))^4+1/35*(5*A-12 
*B)*cos(d*x+c)^3*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^3
 
3.1.66.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(481\) vs. \(2(185)=370\).

Time = 4.77 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.60 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (7350 (A-4 B) d x \cos \left (\frac {d x}{2}\right )+7350 (A-4 B) d x \cos \left (c+\frac {d x}{2}\right )+4410 A d x \cos \left (c+\frac {3 d x}{2}\right )-17640 B d x \cos \left (c+\frac {3 d x}{2}\right )+4410 A d x \cos \left (2 c+\frac {3 d x}{2}\right )-17640 B d x \cos \left (2 c+\frac {3 d x}{2}\right )+1470 A d x \cos \left (2 c+\frac {5 d x}{2}\right )-5880 B d x \cos \left (2 c+\frac {5 d x}{2}\right )+1470 A d x \cos \left (3 c+\frac {5 d x}{2}\right )-5880 B d x \cos \left (3 c+\frac {5 d x}{2}\right )+210 A d x \cos \left (3 c+\frac {7 d x}{2}\right )-840 B d x \cos \left (3 c+\frac {7 d x}{2}\right )+210 A d x \cos \left (4 c+\frac {7 d x}{2}\right )-840 B d x \cos \left (4 c+\frac {7 d x}{2}\right )-19880 A \sin \left (\frac {d x}{2}\right )+60830 B \sin \left (\frac {d x}{2}\right )+16520 A \sin \left (c+\frac {d x}{2}\right )-46130 B \sin \left (c+\frac {d x}{2}\right )-14280 A \sin \left (c+\frac {3 d x}{2}\right )+46116 B \sin \left (c+\frac {3 d x}{2}\right )+7560 A \sin \left (2 c+\frac {3 d x}{2}\right )-18060 B \sin \left (2 c+\frac {3 d x}{2}\right )-5600 A \sin \left (2 c+\frac {5 d x}{2}\right )+19292 B \sin \left (2 c+\frac {5 d x}{2}\right )+1680 A \sin \left (3 c+\frac {5 d x}{2}\right )-2100 B \sin \left (3 c+\frac {5 d x}{2}\right )-1040 A \sin \left (3 c+\frac {7 d x}{2}\right )+3791 B \sin \left (3 c+\frac {7 d x}{2}\right )+735 B \sin \left (4 c+\frac {7 d x}{2}\right )+105 B \sin \left (4 c+\frac {9 d x}{2}\right )+105 B \sin \left (5 c+\frac {9 d x}{2}\right )\right )}{1680 a^4 d (1+\cos (c+d x))^4} \]

input
Integrate[(Cos[c + d*x]^4*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^4,x]
 
output
(Cos[(c + d*x)/2]*Sec[c/2]*(7350*(A - 4*B)*d*x*Cos[(d*x)/2] + 7350*(A - 4* 
B)*d*x*Cos[c + (d*x)/2] + 4410*A*d*x*Cos[c + (3*d*x)/2] - 17640*B*d*x*Cos[ 
c + (3*d*x)/2] + 4410*A*d*x*Cos[2*c + (3*d*x)/2] - 17640*B*d*x*Cos[2*c + ( 
3*d*x)/2] + 1470*A*d*x*Cos[2*c + (5*d*x)/2] - 5880*B*d*x*Cos[2*c + (5*d*x) 
/2] + 1470*A*d*x*Cos[3*c + (5*d*x)/2] - 5880*B*d*x*Cos[3*c + (5*d*x)/2] + 
210*A*d*x*Cos[3*c + (7*d*x)/2] - 840*B*d*x*Cos[3*c + (7*d*x)/2] + 210*A*d* 
x*Cos[4*c + (7*d*x)/2] - 840*B*d*x*Cos[4*c + (7*d*x)/2] - 19880*A*Sin[(d*x 
)/2] + 60830*B*Sin[(d*x)/2] + 16520*A*Sin[c + (d*x)/2] - 46130*B*Sin[c + ( 
d*x)/2] - 14280*A*Sin[c + (3*d*x)/2] + 46116*B*Sin[c + (3*d*x)/2] + 7560*A 
*Sin[2*c + (3*d*x)/2] - 18060*B*Sin[2*c + (3*d*x)/2] - 5600*A*Sin[2*c + (5 
*d*x)/2] + 19292*B*Sin[2*c + (5*d*x)/2] + 1680*A*Sin[3*c + (5*d*x)/2] - 21 
00*B*Sin[3*c + (5*d*x)/2] - 1040*A*Sin[3*c + (7*d*x)/2] + 3791*B*Sin[3*c + 
 (7*d*x)/2] + 735*B*Sin[4*c + (7*d*x)/2] + 105*B*Sin[4*c + (9*d*x)/2] + 10 
5*B*Sin[5*c + (9*d*x)/2]))/(1680*a^4*d*(1 + Cos[c + d*x])^4)
 
3.1.66.3 Rubi [A] (verified)

Time = 1.45 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.09, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.484, Rules used = {3042, 3456, 3042, 3456, 3042, 3456, 3042, 3447, 3042, 3502, 27, 3042, 3214, 3042, 3127}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a \cos (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^4 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\int \frac {\cos ^3(c+d x) (4 a (A-B)-a (A-8 B) \cos (c+d x))}{(\cos (c+d x) a+a)^3}dx}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (4 a (A-B)-a (A-8 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\frac {\int \frac {\cos ^2(c+d x) \left (3 a^2 (5 A-12 B)-2 a^2 (5 A-26 B) \cos (c+d x)\right )}{(\cos (c+d x) a+a)^2}dx}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (3 a^2 (5 A-12 B)-2 a^2 (5 A-26 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\frac {\frac {\int \frac {\cos (c+d x) \left (2 a^3 (25 A-88 B)-a^3 (55 A-244 B) \cos (c+d x)\right )}{\cos (c+d x) a+a}dx}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (2 a^3 (25 A-88 B)-a^3 (55 A-244 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {\frac {\int \frac {2 a^3 (25 A-88 B) \cos (c+d x)-a^3 (55 A-244 B) \cos ^2(c+d x)}{\cos (c+d x) a+a}dx}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {2 a^3 (25 A-88 B) \sin \left (c+d x+\frac {\pi }{2}\right )-a^3 (55 A-244 B) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {\frac {\frac {\int \frac {105 a^4 (A-4 B) \cos (c+d x)}{\cos (c+d x) a+a}dx}{a}-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {105 a^3 (A-4 B) \int \frac {\cos (c+d x)}{\cos (c+d x) a+a}dx-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {105 a^3 (A-4 B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {\frac {105 a^3 (A-4 B) \left (\frac {x}{a}-\int \frac {1}{\cos (c+d x) a+a}dx\right )-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {105 a^3 (A-4 B) \left (\frac {x}{a}-\int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\right )-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3127

\(\displaystyle \frac {\frac {\frac {105 a^3 (A-4 B) \left (\frac {x}{a}-\frac {\sin (c+d x)}{d (a \cos (c+d x)+a)}\right )-\frac {a^2 (55 A-244 B) \sin (c+d x)}{d}}{3 a^2}+\frac {(25 A-88 B) \sin (c+d x) \cos ^2(c+d x)}{3 d (\cos (c+d x)+1)^2}}{5 a^2}+\frac {a (5 A-12 B) \sin (c+d x) \cos ^3(c+d x)}{5 d (a \cos (c+d x)+a)^3}}{7 a^2}+\frac {(A-B) \sin (c+d x) \cos ^4(c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

input
Int[(Cos[c + d*x]^4*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^4,x]
 
output
((A - B)*Cos[c + d*x]^4*Sin[c + d*x])/(7*d*(a + a*Cos[c + d*x])^4) + ((a*( 
5*A - 12*B)*Cos[c + d*x]^3*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) + (( 
(25*A - 88*B)*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*(1 + Cos[c + d*x])^2) + (- 
((a^2*(55*A - 244*B)*Sin[c + d*x])/d) + 105*a^3*(A - 4*B)*(x/a - Sin[c + d 
*x]/(d*(a + a*Cos[c + d*x]))))/(3*a^2))/(5*a^2))/(7*a^2)
 

3.1.66.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3127
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + 
 d*x]/(d*(b + a*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b 
^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.1.66.4 Maple [A] (verified)

Time = 0.97 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.57

method result size
parallelrisch \(\frac {-5840 \left (\left (\frac {31 A}{73}-\frac {2741 B}{1460}\right ) \cos \left (2 d x +2 c \right )+\left (\frac {13 A}{146}-\frac {148 B}{365}\right ) \cos \left (3 d x +3 c \right )-\frac {21 B \cos \left (4 d x +4 c \right )}{1168}+\left (A -\frac {1562 B}{365}\right ) \cos \left (d x +c \right )+\frac {47 A}{73}-\frac {16171 B}{5840}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sec ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6720 d x \left (A -4 B \right )}{6720 a^{4} d}\) \(106\)
derivativedivides \(\frac {\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{7}-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{7}-A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {7 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{5}+\frac {11 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}-\frac {23 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}-15 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+49 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {16 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+16 \left (A -4 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(162\)
default \(\frac {\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{7}-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{7}-A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {7 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{5}+\frac {11 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3}-\frac {23 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}-15 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+49 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {16 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+16 \left (A -4 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(162\)
risch \(\frac {x A}{a^{4}}-\frac {4 B x}{a^{4}}-\frac {i {\mathrm e}^{i \left (d x +c \right )} B}{2 a^{4} d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} B}{2 a^{4} d}-\frac {4 i \left (210 A \,{\mathrm e}^{6 i \left (d x +c \right )}-525 B \,{\mathrm e}^{6 i \left (d x +c \right )}+945 A \,{\mathrm e}^{5 i \left (d x +c \right )}-2625 B \,{\mathrm e}^{5 i \left (d x +c \right )}+2065 A \,{\mathrm e}^{4 i \left (d x +c \right )}-5950 B \,{\mathrm e}^{4 i \left (d x +c \right )}+2485 A \,{\mathrm e}^{3 i \left (d x +c \right )}-7420 B \,{\mathrm e}^{3 i \left (d x +c \right )}+1785 A \,{\mathrm e}^{2 i \left (d x +c \right )}-5397 B \,{\mathrm e}^{2 i \left (d x +c \right )}+700 A \,{\mathrm e}^{i \left (d x +c \right )}-2149 B \,{\mathrm e}^{i \left (d x +c \right )}+130 A -382 B \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(226\)
norman \(\frac {\frac {\left (A -4 B \right ) x}{a}+\frac {\left (A -4 B \right ) x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {\left (A -22 B \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{84 a d}+\frac {5 \left (A -4 B \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {10 \left (A -4 B \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {10 \left (A -4 B \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {5 \left (A -4 B \right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {\left (A -B \right ) \left (\tan ^{17}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{56 a d}-\frac {5 \left (3 A -13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {\left (5 A -12 B \right ) \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{140 a d}-\frac {25 \left (20 A -83 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{84 a d}-\frac {\left (55 A -244 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{84 a d}-\frac {\left (107 A -452 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 a d}-\frac {\left (995 A -4118 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{60 a d}-\frac {\left (1241 A -5084 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{84 a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5} a^{3}}\) \(368\)

input
int(cos(d*x+c)^4*(A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^4,x,method=_RETURNVERBO 
SE)
 
output
1/6720*(-5840*((31/73*A-2741/1460*B)*cos(2*d*x+2*c)+(13/146*A-148/365*B)*c 
os(3*d*x+3*c)-21/1168*B*cos(4*d*x+4*c)+(A-1562/365*B)*cos(d*x+c)+47/73*A-1 
6171/5840*B)*tan(1/2*d*x+1/2*c)*sec(1/2*d*x+1/2*c)^6+6720*d*x*(A-4*B))/a^4 
/d
 
3.1.66.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.15 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {105 \, {\left (A - 4 \, B\right )} d x \cos \left (d x + c\right )^{4} + 420 \, {\left (A - 4 \, B\right )} d x \cos \left (d x + c\right )^{3} + 630 \, {\left (A - 4 \, B\right )} d x \cos \left (d x + c\right )^{2} + 420 \, {\left (A - 4 \, B\right )} d x \cos \left (d x + c\right ) + 105 \, {\left (A - 4 \, B\right )} d x + {\left (105 \, B \cos \left (d x + c\right )^{4} - 4 \, {\left (65 \, A - 296 \, B\right )} \cos \left (d x + c\right )^{3} - 4 \, {\left (155 \, A - 659 \, B\right )} \cos \left (d x + c\right )^{2} - {\left (535 \, A - 2236 \, B\right )} \cos \left (d x + c\right ) - 160 \, A + 664 \, B\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

input
integrate(cos(d*x+c)^4*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="f 
ricas")
 
output
1/105*(105*(A - 4*B)*d*x*cos(d*x + c)^4 + 420*(A - 4*B)*d*x*cos(d*x + c)^3 
 + 630*(A - 4*B)*d*x*cos(d*x + c)^2 + 420*(A - 4*B)*d*x*cos(d*x + c) + 105 
*(A - 4*B)*d*x + (105*B*cos(d*x + c)^4 - 4*(65*A - 296*B)*cos(d*x + c)^3 - 
 4*(155*A - 659*B)*cos(d*x + c)^2 - (535*A - 2236*B)*cos(d*x + c) - 160*A 
+ 664*B)*sin(d*x + c))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6* 
a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)
 
3.1.66.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 578 vs. \(2 (172) = 344\).

Time = 5.07 (sec) , antiderivative size = 578, normalized size of antiderivative = 3.12 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\begin {cases} \frac {840 A d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {840 A d x}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {15 A \tan ^{9}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {90 A \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {280 A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {1190 A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {1575 A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {3360 B d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {3360 B d x}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {15 B \tan ^{9}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {132 B \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} - \frac {658 B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {4340 B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} + \frac {6825 B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{840 a^{4} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 840 a^{4} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\left (c \right )}\right ) \cos ^{4}{\left (c \right )}}{\left (a \cos {\left (c \right )} + a\right )^{4}} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)**4*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**4,x)
 
output
Piecewise((840*A*d*x*tan(c/2 + d*x/2)**2/(840*a**4*d*tan(c/2 + d*x/2)**2 + 
 840*a**4*d) + 840*A*d*x/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) + 1 
5*A*tan(c/2 + d*x/2)**9/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 90 
*A*tan(c/2 + d*x/2)**7/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) + 280 
*A*tan(c/2 + d*x/2)**5/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 119 
0*A*tan(c/2 + d*x/2)**3/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 15 
75*A*tan(c/2 + d*x/2)/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 3360 
*B*d*x*tan(c/2 + d*x/2)**2/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 
 3360*B*d*x/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 15*B*tan(c/2 + 
 d*x/2)**9/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) + 132*B*tan(c/2 + 
 d*x/2)**7/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) - 658*B*tan(c/2 + 
 d*x/2)**5/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) + 4340*B*tan(c/2 
+ d*x/2)**3/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d) + 6825*B*tan(c/2 
 + d*x/2)/(840*a**4*d*tan(c/2 + d*x/2)**2 + 840*a**4*d), Ne(d, 0)), (x*(A 
+ B*cos(c))*cos(c)**4/(a*cos(c) + a)**4, True))
 
3.1.66.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.46 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {B {\left (\frac {1680 \, \sin \left (d x + c\right )}{{\left (a^{4} + \frac {a^{4} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} + \frac {\frac {5145 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {805 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {147 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {6720 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}\right )} - 5 \, A {\left (\frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {336 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}\right )}}{840 \, d} \]

input
integrate(cos(d*x+c)^4*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="m 
axima")
 
output
1/840*(B*(1680*sin(d*x + c)/((a^4 + a^4*sin(d*x + c)^2/(cos(d*x + c) + 1)^ 
2)*(cos(d*x + c) + 1)) + (5145*sin(d*x + c)/(cos(d*x + c) + 1) - 805*sin(d 
*x + c)^3/(cos(d*x + c) + 1)^3 + 147*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 
 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 6720*arctan(sin(d*x + c)/(c 
os(d*x + c) + 1))/a^4) - 5*A*((315*sin(d*x + c)/(cos(d*x + c) + 1) - 77*si 
n(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 
 - 3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 336*arctan(sin(d*x + c)/(c 
os(d*x + c) + 1))/a^4))/d
 
3.1.66.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.02 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {\frac {840 \, {\left (d x + c\right )} {\left (A - 4 \, B\right )}}{a^{4}} + \frac {1680 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )} a^{4}} + \frac {15 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 105 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 147 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 385 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 805 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1575 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5145 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{840 \, d} \]

input
integrate(cos(d*x+c)^4*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="g 
iac")
 
output
1/840*(840*(d*x + c)*(A - 4*B)/a^4 + 1680*B*tan(1/2*d*x + 1/2*c)/((tan(1/2 
*d*x + 1/2*c)^2 + 1)*a^4) + (15*A*a^24*tan(1/2*d*x + 1/2*c)^7 - 15*B*a^24* 
tan(1/2*d*x + 1/2*c)^7 - 105*A*a^24*tan(1/2*d*x + 1/2*c)^5 + 147*B*a^24*ta 
n(1/2*d*x + 1/2*c)^5 + 385*A*a^24*tan(1/2*d*x + 1/2*c)^3 - 805*B*a^24*tan( 
1/2*d*x + 1/2*c)^3 - 1575*A*a^24*tan(1/2*d*x + 1/2*c) + 5145*B*a^24*tan(1/ 
2*d*x + 1/2*c))/a^28)/d
 
3.1.66.9 Mupad [B] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.09 \[ \int \frac {\cos ^4(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx=\frac {A\,d\,x-4\,B\,d\,x}{a^4\,d}-\frac {\left (\frac {52\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}-\frac {764\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{105}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {143\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{105}-\frac {16\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (\frac {5\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{28}-\frac {8\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}+\frac {B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}}{a^4\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}+\frac {2\,B\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^4\,d} \]

input
int((cos(c + d*x)^4*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^4,x)
 
output
(A*d*x - 4*B*d*x)/(a^4*d) - ((B*sin(c/2 + (d*x)/2))/56 - (A*sin(c/2 + (d*x 
)/2))/56 + cos(c/2 + (d*x)/2)^2*((5*A*sin(c/2 + (d*x)/2))/28 - (8*B*sin(c/ 
2 + (d*x)/2))/35) - cos(c/2 + (d*x)/2)^4*((16*A*sin(c/2 + (d*x)/2))/21 - ( 
143*B*sin(c/2 + (d*x)/2))/105) + cos(c/2 + (d*x)/2)^6*((52*A*sin(c/2 + (d* 
x)/2))/21 - (764*B*sin(c/2 + (d*x)/2))/105))/(a^4*d*cos(c/2 + (d*x)/2)^7) 
+ (2*B*cos(c/2 + (d*x)/2)*sin(c/2 + (d*x)/2))/(a^4*d)